Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 11(17): 5955-5969, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37477383

RESUMO

Synthetic polymer nanodiscs are self-assembled structures formed from amphipathic copolymers encapsulating membrane proteins and surrounding phospholipids into water soluble discs. These nanostructures have served as an analytical tool for the detergent free solubilisation and structural study of membrane proteins (MPs) in their native lipid environment. We established the polymer-lipid nanodisc forming ability of a novel class of amphipathic copolymer comprised of an alternating sequence of N-alkyl functionalised maleimide (AlkylM) of systematically varied hydrocarbon chain length, and cationic N-methyl-4-vinyl pyridinium iodide (MVP). Using a combination of physicochemical techniques, the solubilisation efficiency, size, structure and shape of DMPC lipid containing poly(MVP-co-AlkylM) nanodiscs were determined. Lipid solubilisation increased with AlkylM hydrocarbon chain length from methyl (MM), ethyl (EtM), n-propyl (PM), iso-butyl (IBM) through to n-butyl (BM) maleimide bearing polymers. More hydrophobic derivatives formed smaller sized nanodiscs and lipid ordering within poly(MVP-co-AlkylM) nanodiscs was affected by nanodisc size. In dye-release assays, shorter N-alkyl substituted polymers, particularly poly(MVP-co-EtM), exhibited low activities against eukaryotic mimetic POPC membrane and increased their liposome disruption as POPC : POPG membrane mixtures increased in their anionic POPG component, resembling the charge profile of bacterial membranes. These trends in membrane selectivity were transferred towards native cell systems in which gram-positive Staphylococcus aureus and gram-negative Acenobacter baumannii bacterial strains were relatively susceptible to disruption by hydrophobic n-butyl- and n-propyl-poly(MVP-co-AlkylM) derivatives compared to human red blood cells (HRBCs), with a more pronounced selectivity resulting from poly(MVP-co-PM). Such selective membrane interaction by less hydrophobic polymers provides a framework for polymer design towards applications including selective membrane component solubilisation, biosensing and antimicrobial development.


Assuntos
Nanoestruturas , Polímeros , Humanos , Polímeros/química , Proteínas de Membrana/química , Nanoestruturas/química , Maleimidas , Fosfolipídeos/química , Bicamadas Lipídicas/química
2.
ACS Nano ; 17(9): 8598-8612, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37078604

RESUMO

Biomimetic cubic phases can be used for protein encapsulation in a variety of applications such as biosensors and drug delivery. Cubic phases with a high concentration of cholesterol and phospholipids were obtained herein. It is shown that the cubic phase structure can be maintained with a higher concentration of biomimetic membrane additives than has been reported previously. Opposing effects on the curvature of the membrane were observed upon the addition of phospholipids and cholesterol. Furthermore, the coronavirus fusion peptide significantly increased the negative curvature of the biomimetic membrane with cholesterol. We show that the viral fusion peptide can undergo structural changes leading to the formation of hydrophobic α-helices that insert into the lipid bilayer. This is of high importance, as a fusion peptide that induces increased negative curvature as shown by the formation of inverse hexagonal phases allows for greater contact area between two membranes, which is required for viral fusion to occur. The cytotoxicity assay showed that the toxicity toward HeLa cells was dramatically decreased when the cholesterol or peptide level in the nanoparticles increased. This suggests that the addition of cholesterol can improve the biocompatibility of the cubic phase nanoparticles, making them safer for use in biomedical applications. As the results, this work improves the potential for the biomedical end-use applications of the nonlamellar lipid nanoparticles and shows the need of systematic formulation studies due to the complex interplay of all components.


Assuntos
Coronavirus , Humanos , Biomimética , Células HeLa , Peptídeos/farmacologia , Peptídeos/química , Fosfolipídeos/química , Bicamadas Lipídicas/química , Colesterol
3.
Food Chem ; 411: 135464, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36669335

RESUMO

Lentils and mungbean proteins are under-researched compared to pea and soybean. Lentils (green, red and black-lentils), mungbean and yellow pea protein isolates were obtained by alkaline extraction (pH 9)-isoelectric precipitation (pH 4.5) and investigated for molecular and higher-order structures using complementary and novel approaches. These extracted isolates showed comparable protein content but significantly greater nitrogen solubility index (NSI > 85 %) than commercial pea and soy protein isolates (NSI < 60 %). Based on molecular weight estimations from sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis, the soluble proteins of lentils and yellow pea were identified as legumin-like and vicilin-like, while mungbean was dominated by vicilin-like proteins. The soluble extracts were confirmed to be in native structural condition by size exclusion chromatography and nano-differential scanning calorimetry, unlike commercial extracts. Further differences in secondary structure were evident on circular dichroism spectra of the soluble extracts and deconvolution of the Amide I region (1700-1600 cm-1) from Fourier Transform Infrared of the total protein.


Assuntos
Fabaceae , Lens (Planta) , Vigna , Fabaceae/química , Pisum sativum/química , Proteínas de Plantas/química , Verduras , Sementes/química
4.
Biomacromolecules ; 23(9): 3560-3571, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35921528

RESUMO

An in-depth understanding of the effect of physicochemical properties of nanocarriers on their cellular uptake and fate is crucial for the development of novel delivery systems. In this study, well-defined hydrophobic carboxylated poly(3-hydroxypropionate)-based comb polymers were synthesized. Two oligo(3-hydroxypropionate) (HPn) of different degrees of polymerization (DP; 5 and 9) bearing α-vinyl end-groups were obtained by an hydrogen transfer polymerization (HTP)-liquid/liquid extraction strategy. 2-Carboxyethyl acrylate (CEA), representing the DP 1 analogue of HPn, was also included in the study. (Macro)monomers were polymerized via reversible addition-fragmentation chain-transfer (RAFT) polymerization and fully characterized by 1H NMR spectroscopy and size exclusion chromatography. All polymers were non-hemolytic and non-cytotoxic against NIH/3T3 cells. Detailed cellular association and uptake studies of Cy5-labeled polymers by flow cytometry and confocal laser scanning microscopy (CLSM) revealed that the carboxylated water-soluble PCEA, the polymer with the shortest side chain, efficiently targets mitochondria. However, increasing the side-chain DP led to a change in the intracellular fate. P(HP5) was trafficked to both mitochondria and lysosomes, while P(HP9) was exclusively found in lysosomes. Importantly, FLIM-FRET investigation of P(HP5) provided initial insight into the mitochondria subcompartment location of Cy5-labeled carboxylated polymers. Moreover, intracellular uptake mechanism studies were performed. Blocking scavenger receptors by dextran sulfate or cooling cells to 4 °C significantly affected the cell association of hydrophobic carboxylated polymers with an insignificant response to membrane-potential inhibitors. In contrast, water-soluble carboxylated polymers' cellular association was substantially inhibited in cells treated with compounds depleting the mitochondrial potential (ΔΨ). Overall, this study highlights hydrophobicity as a valuable means to tune the cellular interaction of carboxylated polymers and thus will inform the design of future drug carriers based on Cy5-modified carboxylated polymers.


Assuntos
Polímeros , Água , Animais , Interações Hidrofóbicas e Hidrofílicas , Ácido Láctico/análogos & derivados , Camundongos , Poliésteres , Polimerização , Polímeros/química , Polímeros/farmacologia
7.
Nat Chem Biol ; 17(6): 732-738, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33737758

RESUMO

Petrochemical-based plastics have not only contaminated all parts of the globe, but are also causing potentially irreversible damage to our ecosystem because of their non-biodegradability. As bioplastics are limited in number, there is an urgent need to design and develop more biodegradable alternatives to mitigate the plastic menace. In this regard, we report aquaplastic, a new class of microbial biofilm-based biodegradable bioplastic that is water-processable, robust, templatable and coatable. Here, Escherichia coli was genetically engineered to produce protein-based hydrogels, which are cast and dried under ambient conditions to produce aquaplastic, which can withstand strong acid/base and organic solvents. In addition, aquaplastic can be healed and welded to form three-dimensional architectures using water. The combination of straightforward microbial fabrication, water processability and biodegradability makes aquaplastic a unique material worthy of further exploration for packaging and coating applications.


Assuntos
Biofilmes , Plásticos/química , Água/química , Biodegradação Ambiental , Bioengenharia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas/química , Solventes , Resistência à Tração
8.
Food Funct ; 11(1): 955-964, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31956871

RESUMO

The problem of malnutrition and nutrition deficiency, as well as droughts that lead to reduction in food supply and starvation, is well documented for Sub-Saharan Africa. Reducing post-harvest losses of five species of African leafy vegetables (ALVs) by preservation through drying is studied herein. Energy efficient gentle drying conditions using superabsorbent polymers and a temperature of 40 °C were shown to preserve most leaf structures and vitamins. The microbial safe moisture content of the ALVs was found to be ≤14% dry basis. Dried Slender Leaf and Nightshade leaves could be rehydrated to the equilibrium moisture content of fresh leaves upon dry storage, while it was not possible for Jute Mallow, Cowpea and Amaranthus. This was attributed to different palisade parenchyma cell lengths. An increased amount of starch granules as observed in the microstructure of Cowpea and Nightshade leaves is suggested to explain their fibrous texture upon cooking. These results show that the ALVs can be effectively preserved using the same drying method and that this can be used to fight micro-nutrient deficiencies during droughts.


Assuntos
Dessecação , Folhas de Planta/química , Verduras/química , Vitaminas/análise , África , Amaranthus , Solanum , Vigna
9.
Front Chem ; 8: 619470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33644002

RESUMO

This perspective describes advances in determining membrane protein structures in lipid bilayers using small-angle neutron scattering (SANS). Differentially labeled detergents with a homogeneous scattering length density facilitate contrast matching of detergent micelles; this has previously been used successfully to obtain the structures of membrane proteins. However, detergent micelles do not mimic the lipid bilayer environment of the cell membrane in vivo. Deuterated vesicles can be used to obtain the radius of gyration of membrane proteins, but protein-protein interference effects within the vesicles severely limits this method such that the protein structure cannot be modeled. We show herein that different membrane protein conformations can be distinguished within the lipid bilayer of the bicontinuous cubic phase using contrast-matching. Time-resolved studies performed using SANS illustrate the complex phase behavior in lyotropic liquid crystalline systems and emphasize the importance of this development. We believe that studying membrane protein structures and phase behavior in contrast-matched lipid bilayers will advance both biological and pharmaceutical applications of membrane-associated proteins, biosensors and food science.

10.
Langmuir ; 35(25): 8344-8356, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31122018

RESUMO

For evolving biological and biomedical applications of hybrid protein?lipid materials, understanding the behavior of the protein within the lipid mesophase is crucial. After more than two decades since the invention of the in meso crystallization method, a protein-eye view of its mechanism is still lacking. Numerous structural studies have suggested that integral membrane proteins preferentially partition at localized flat points on the bilayer surface of the cubic phase with crystal growth occurring from a local fluid lamellar L? phase conduit. However, studies to date have, by necessity, focused on structural transitions occurring in the lipid mesophase. Here, we demonstrate using small-angle neutron scattering that the lipid bilayer of monoolein (the most commonly used lipid for in meso crystallization) can be contrast-matched using deuteration, allowing us to isolate scattering from encapsulated peptides during the crystal growth process for the first time. During in meso crystallization, a clear decrease in form factor scattering intensity of the peptides was observed and directly correlated with crystal growth. A transient fluid lamellar L? phase was observed, providing direct evidence for the proposed mechanism for this technique. This suggests that the peptide passes through a transition from the cubic QII phase, via an L? phase to the lamellar crystalline Lc phase with similar layered spacing. When high protein loading was possible, the lamellar crystalline Lc phase of the peptide in the single crystals was observed. These findings show the mechanism of in meso crystallization for the first time from the perspective of integral membrane proteins.


Assuntos
Cristalização/métodos , Bicamadas Lipídicas/química , Glicerídeos/química , Difração de Raios X
11.
Chem Soc Rev ; 46(10): 2705-2731, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28280815

RESUMO

Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).

12.
Soft Matter ; 13(7): 1493-1504, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28125111

RESUMO

Retention of amphiphilic protein activity within the lipid bilayer membrane of the nanostructured biomimetic bicontinuous cubic phase is crucial for applications utilizing these hybrid protein-lipid self-assembly materials, such as in meso membrane protein crystallization and drug delivery. Previous work, mainly on soluble and membrane-associated enzymes, has shown that enzyme activity may be modified when immobilized, including membrane bound enzymes. The effect on activity may be even greater for amphiphilic enzymes with a large hydrophilic domain, such as the Neisserial enzyme lipid A phosphoethanolamine transferase (EptA). Encapsulation within the biomimetic but non-endogenous lipid bilayer membrane environment may modify the enzyme conformation, while confinement of the large hydrophilic domain with the nanoscale water channels of a continuous lipid bilayer structure may prevent full function of this enzyme. Herein we show that NmEptA remains active despite encapsulation within a nanostructured bicontinuous cubic phase. Full transfer of the phosphoethanolamine (PEA) group from a 1,2-dioleoyl-glycero-phosphoethanolamine (DOPE) doped lipid to monoolein (MO), which makes up the bicontinuous cubic phase, is shown. The reaction was found to be non-specific to the alkyl chain identity. The observed rate of enzyme activity is similar to other membrane bound enzymes, with complete transfer of the PEA group occurring in vitro, under the conditions studied, over a 24 hour timescale.


Assuntos
Etanolaminofosfotransferase/metabolismo , Lipídeo A/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Etanolaminofosfotransferase/química , Modelos Moleculares , Neisseria/enzimologia , Fosfatidiletanolaminas/metabolismo , Fosforilação , Conformação Proteica
13.
J Phys Chem Lett ; 7(14): 2862-6, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27414483

RESUMO

An understanding of the location of peptides, proteins, and other biomolecules within the bicontinuous cubic phase is crucial for understanding and evolving biological and biomedical applications of these hybrid biomolecule-lipid materials, including during in meso crystallization and drug delivery. While theoretical modeling has indicated that proteins and additive lipids might phase separate locally and adopt a preferred location in the cubic phase, this has never been experimentally confirmed. We have demonstrated that perfectly contrast-matched cubic phases in D2O can be studied using small-angle neutron scattering by mixing fully deuterated and hydrogenated lipid at an appropriate ratio. The model transmembrane peptide WALP21 showed no preferential location in the membrane of the diamond cubic phase of phytanoyl monoethanolamide and was not incorporated in the gyroid cubic phase. While deuteration had a small effect on the phase behavior of the cubic phase forming lipids, the changes did not significantly affect our results.


Assuntos
Difração de Nêutrons , Peptídeos/química , Proteínas/química , Espalhamento a Baixo Ângulo , Varredura Diferencial de Calorimetria , Medição da Troca de Deutério , Óxido de Deutério/química , Óxido de Deutério/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Temperatura , Difração de Raios X
14.
Langmuir ; 32(27): 6882-94, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27315326

RESUMO

Nanostructured bicontinuous lipidic cubic phases are used for the encapsulation of proteins in a range of applications such as in meso crystallization of transmembrane proteins and as drug delivery vehicles. The retention of the nanoscale order of the cubic phases subsequent to protein incorporation, as well as retention of the protein structure and function, is essential for all of these applications. Herein synthetic peptides (WALP21, WALPS53, and WALPS73) with a common α-helical hydrophobic domain, but varying hydrophilic loop size, were designed to systematically examine the effect of peptide structure and charge on bicontinuous cubic phases. The effect of the cubic phases on the secondary structure of the peptides was also investigated. The incorporation of the WALP peptides in cubic phases formed by a range of lipids showed that hydrophobic mismatch of the peptides with the lipid bilayers, the hydrophilic domain size, and peptide charge were all significant factors determining the response of the lipid nanomaterial to protein insertion. As charge repulsion had the most significant effect on the phase transitions observed, we suggest that buffer pH and salt concentration must be carefully considered to ensure cubic mesophase retention. Importantly, the WALP peptides were found to have a different conformation depending on the local lipid environment. Such structural changes could potentially affect membrane protein function, which is crucial for both current and prospective applications.


Assuntos
Bicamadas Lipídicas/química , Modelos Moleculares , Nanoestruturas/química , Peptídeos/química , Estrutura Secundária de Proteína
15.
Langmuir ; 32(47): 12442-12452, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27326898

RESUMO

A fundamental understanding of the effect of amphiphilic protein encapsulation on the nanostructure of the bicontinuous cubic phase is crucial to progressing biomedical and biological applications of these hybrid protein-lipid materials, including as drug delivery vehicles, as biosensors, biofuel cells and for in meso crystallization. The relationship between the lipid nanomaterial and the encapsulated protein, however, remains poorly understood. In this study, we investigated the effect of incorporating the five transmembrane and lipo-proteins which make up the ß-barrel assembly machinery from Gram-negative bacteria within a series of bicontinuous cubic phases. The transmembrane ß-barrel BamA caused an increase in lattice parameter of the cubic phase upon encapsulation. By contrast, the mainly hydrophilic lipo-proteins BamB-E caused the cubic phase lattice parameters to decrease, despite their large size relative to the diameter of the cubic phase water channels. Analysis of the primary amino acid sequence was used to rationalize this effect, based on specific interactions between aromatic amino acids within the proteins and the polar-apolar interface. Other factors that were found to have an effect were lateral bilayer pressure and rigidity within the lipid bilayer, water channel diameter, and size and structure of the lipo-proteins. The data presented suggest that hydrophilic bioactive molecules can be selectively encapsulated within the cubic phase by using a lipid anchor or aromatic amino acids, for drug delivery or biosensing applications.


Assuntos
Bicamadas Lipídicas/química , Nanoestruturas/química , Proteínas/química , Proteínas da Membrana Bacteriana Externa/química , Materiais Biomiméticos/química , Colesterol/química , Proteínas de Escherichia coli/química , Lipoproteínas/química , Modelos Moleculares , Nanocápsulas/química , Nanotecnologia , Conformação Proteica em Folha beta , Proteínas Recombinantes/química
16.
Philos Trans A Math Phys Eng Sci ; 374(2072)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298442

RESUMO

The proposed mechanism for in meso crystallization of transmembrane proteins suggests that a protein or peptide is initially uniformly dispersed in the lipid self-assembly cubic phase but that crystals grow from a local lamellar phase, which acts as a conduit between the crystal and the bulk cubic phase. However, there is very limited experimental evidence for this theory. We have developed protocols to investigate the lipid mesophase microenvironment during crystal growth using standard procedures readily available in crystallography laboratories. This technique was used to characterize the microenvironment during crystal growth of the DAP12-TM peptide using synchrotron small angle X-ray scattering (SAXS) with a micro-sized X-ray beam. Crystal growth was found to occur from the gyroid cubic mesophase. For one in four crystals, a highly oriented local lamellar phase was observed, providing supporting evidence for the proposed mechanism for in meso crystallization. A new observation of this study was that we can differentiate diffraction peaks from crystals grown in meso, from peaks originating from the surrounding lipid matrix, potentially opening up the possibility of high-throughput SAXS analysis of in meso grown crystals.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Peptídeos/química , Microambiente Celular , Cristalização , Proteínas de Membrana/ultraestrutura , Modelos Moleculares , Estrutura Secundária de Proteína
17.
Langmuir ; 31(44): 12025-34, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26488819

RESUMO

Lipidic bicontinuous cubic mesophases with encapsulated amphiphilic proteins are widely used in a range of biological and biomedical applications, including in meso crystallization, as drug delivery vehicles for therapeutic proteins, and as biosensors and biofuel cells. However, the effect of amphiphilic protein encapsulation on the cubic phase nanostructure is not well-understood. In this study, we illustrate the effect of incorporating the bacterial amphiphilic membrane protein Ag43, and its individual hydrophobic ß(43) and hydrophilic α(43) domains, in bicontinuous cubic mesophases. For the monoolein, monoalmitolein, and phytantriol cubic phases with and without 8% w/w cholesterol, the effect of the full length amphiphilic protein Ag43 on the cubic phase nanostructure was more significant than the sum of the individual hydrophobic ß(43) and hydrophilic α(43) domains. Several factors were found to potentially influence the impact of the hydrophobic ß(43) domain on the cubic phase internal nanostructure. These include the size of the hydrophobic ß(43) domain relative to the thickness of the lipid bilayer, as well as its charge and diameter. The size of the hydrophilic α(43) domain relative to the water channel radius of the cubic mesophase was also found to be important. The secondary structure of the Ag43 proteins was affected by the hydrophobic thickness and physicochemical properties of the lipid bilayer and the water channel diameter of the cubic phase. Such structural changes may be small but could potentially affect membrane protein function.


Assuntos
Lipídeos/química , Proteínas de Membrana/química , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas
18.
Cell Rep ; 11(8): 1184-92, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25981043

RESUMO

The membrane-spanning α helices of single-pass receptors play crucial roles in stabilizing oligomeric structures and transducing biochemical signals across the membrane. Probing intermolecular transmembrane interactions in single-pass receptors presents unique challenges, reflected in a gross underrepresentation of their membrane-embedded domains in structural databases. Here, we present two high-resolution structures of transmembrane assemblies from a eukaryotic single-pass protein crystallized in a lipidic membrane environment. Trimeric and tetrameric structures of the immunoreceptor signaling module DAP12, determined to 1.77-Å and 2.14-Å resolution, respectively, are organized by the same polar surfaces that govern intramembrane assembly with client receptors. We demonstrate that, in addition to the well-studied dimeric form, these trimeric and tetrameric structures are made in cells, and their formation is competitive with receptor association in the ER. The polar transmembrane sequences therefore act as primary determinants of oligomerization specificity through interplay between charge shielding and sequestration of polar surfaces within helix interfaces.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Transdução de Sinais
19.
Photochem Photobiol Sci ; 12(2): 404-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22990442

RESUMO

In the standard nanosecond laser photolysis method for kinetic studies, a Q-switched laser generates transient species, and absorption spectrophotometry provides a measure of their concentrations. The sample is placed between the monitoring source (a pulsed xenon arc or a flash lamp) and a monochromator, and a photomultiplier tube (PMT) is used for measuring the intensity of the light leaving the exit slit of the monochromator. With this (single-beam) arrangement, the laser-induced change in the absorbance of the sample, ΔA, can be calculated only if the intensity of the monitoring beam remains constant during the time interval of interest. When this condition is not fulfilled, a second measurement of the PMT output is made after blocking the path of the laser beam, but shot-to-shot variations in the output of the monitoring source vitiate the analysis when ΔA is small. To overcome this problem, double-beam versions were developed in the last century, but the single-beam version still enjoys greater popularity. With a view to making the double-beam method easily implementable, some simple modifications are introduced, which permit the conversion of an existing laser kinetic spectrometer into a double-beam variant (with one or two monochromators).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...